LaTeX Equation to PNG Converter


LaTeX Formula Template Reference

Algebra

FormulasLaTeXFormulasLaTeX
$\left(x-1\right)\left(x+3\right)$\left(x-1\right)\left(x+3\right)$\sqrt{a^2+b^2}$ \sqrt{a^2+b^2}
$\left ( \frac{a}{b}\right )^{n}= \frac{a^{n}}{b^{n}} $\left ( \frac{a}{b}\right )^{n}= \frac{a^{n}}{b^{n}} $\frac{a}{b}\pm \frac{c}{d}= \frac{ad \pm bc}{bd} $\frac{a}{b}\pm \frac{c}{d}= \frac{ad \pm bc}{bd}
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0 $\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0
$\sqrt[n]{a^{n}}=\left ( \sqrt[n]{a}\right )^{n} $\sqrt[n]{a^{n}}=\left ( \sqrt[n]{a}\right )^{n} $x ={-b \pm \sqrt{b^2-4ac}\over 2a} $x ={-b \pm \sqrt{b^2-4ac}\over 2a}
$y-y_{1}=k \left( x-x_{1}\right) $y-y_{1}=k \left( x-x_{1}\right) $\left\{\begin{matrix} x=a + r\text{cos}\theta \\ y=b + r\text{sin}\theta \end{matrix}\right. $\left\{\begin{matrix} x=a + r\text{cos}\theta \\ y=b + r\text{sin}\theta \end{matrix}\right.
$\begin{array}{l} \text{对于方程形如:}x^{3}-1=0 \\ \text{设}\text{:}\omega =\frac{-1+\sqrt{3}i}{2} \\ x_{1}=1,x_{2}= \omega =\frac{-1+\sqrt{3}i}{2} \\ x_{3}= \omega ^{2}=\frac{-1-\sqrt{3}i}{2} \end{array} $\begin{array}{l} \text{对于方程形如:}x^{3}-1=0 \\ \text{设}\text{:}\omega =\frac{-1+\sqrt{3}i}{2} \\ x_{1}=1,x_{2}= \omega =\frac{-1+\sqrt{3}i}{2} \\ x_{3}= \omega ^{2}=\frac{-1-\sqrt{3}i}{2} \end{array} $\begin{array}{l} a\mathop{{x}}\nolimits^{{2}}+bx+c=0 \\ \Delta =\mathop{{b}}\nolimits^{{2}}-4ac \\ \left\{\begin{matrix} \Delta \gt 0\text{方程有两个不相等的实根} \\ \Delta = 0\text{方程有两个相等的实根} \\ \Delta \lt 0\text{方程无实根} \end{matrix}\right. \end{array} $\begin{array}{l} a\mathop{{x}}\nolimits^{{2}}+bx+c=0 \\ \Delta =\mathop{{b}}\nolimits^{{2}}-4ac \\ \left\{\begin{matrix} \Delta \gt 0\text{方程有两个不相等的实根} \\ \Delta = 0\text{方程有两个相等的实根} \\ \Delta \lt 0\text{方程无实根} \end{matrix}\right. \end{array}
$\begin{array}{l} a\mathop{{x}}\nolimits^{{2}}+bx+c=0 \\ \Delta =\mathop{{b}}\nolimits^{{2}}-4ac \\ \mathop{{x}}\nolimits_{{1,2}}=\frac{{-b \pm \sqrt{{\mathop{{b}}\nolimits^{{2}}-4ac}}}}{{2a}} \\ \mathop{{x}}\nolimits_{{1}}+\mathop{{x}}\nolimits_{{2}}=-\frac{{b}}{{a}} \\ \mathop{{x}}\nolimits_{{1}}\mathop{{x}}\nolimits_{{2}}=\frac{{c}}{{a}} \end{array} $\begin{array}{l} a\mathop{{x}}\nolimits^{{2}}+bx+c=0 \\ \Delta =\mathop{{b}}\nolimits^{{2}}-4ac \\ \mathop{{x}}\nolimits_{{1,2}}=\frac{{-b \pm \sqrt{{\mathop{{b}}\nolimits^{{2}}-4ac}}}}{{2a}} \\ \mathop{{x}}\nolimits_{{1}}+\mathop{{x}}\nolimits_{{2}}=-\frac{{b}}{{a}} \\ \mathop{{x}}\nolimits_{{1}}\mathop{{x}}\nolimits_{{2}}=\frac{{c}}{{a}} \end{array}

Geometry

FormulasLaTeXFormulasLaTeX
$\Delta A B C$\Delta A B C$a \parallel c,b \parallel c \Rightarrow a \parallel b $a \parallel c,b \parallel c \Rightarrow a \parallel b
$l \perp \beta ,l \subset \alpha \Rightarrow \alpha \perp \beta$l \perp \beta ,l \subset \alpha \Rightarrow \alpha \perp \beta$\left.\begin{matrix} a \perp \alpha \\ b \perp \alpha \end{matrix}\right\}\Rightarrow a \parallel b$\left.\begin{matrix} a \perp \alpha \\ b \perp \alpha \end{matrix}\right\}\Rightarrow a \parallel b
$P \in \alpha ,P \in \beta , \alpha \cap \beta =l \Rightarrow P \in l $P \in \alpha ,P \in \beta , \alpha \cap \beta =l \Rightarrow P \in l $\alpha \perp \beta , \alpha \cap \beta =l,a \subset \alpha ,a \perp l \Rightarrow a \perp \beta $\alpha \perp \beta , \alpha \cap \beta =l,a \subset \alpha ,a \perp l \Rightarrow a \perp \beta
$\left.\begin{matrix} a \subset \beta ,b \subset \beta ,a \cap b=P \\ a \parallel \partial ,b \parallel \partial \end{matrix}\right\}\Rightarrow \beta \parallel \alpha $\left.\begin{matrix} a \subset \beta ,b \subset \beta ,a \cap b=P \\ a \parallel \partial ,b \parallel \partial \end{matrix}\right\}\Rightarrow \beta \parallel \alpha $\alpha \parallel \beta , \gamma \cap \alpha =a, \gamma \cap \beta =b \Rightarrow a \parallel b $\alpha \parallel \beta , \gamma \cap \alpha =a, \gamma \cap \beta =b \Rightarrow a \parallel b
$A \in l,B \in l,A \in \alpha ,B \in \alpha \Rightarrow l \subset \alpha $A \in l,B \in l,A \in \alpha ,B \in \alpha \Rightarrow l \subset \alpha $\left.\begin{matrix} m \subset \alpha ,n \subset \alpha ,m \cap n=P \\ a \perp m,a \perp n \end{matrix}\right\}\Rightarrow a \perp \alpha $\left.\begin{matrix} m \subset \alpha ,n \subset \alpha ,m \cap n=P \\ a \perp m,a \perp n \end{matrix}\right\}\Rightarrow a \perp \alpha
$\begin{array}{c} \text{直角三角形中,直角边长a,b,斜边边长c} \\ a^{2}+b^{2}=c^{2} \end{array}$\begin{array}{c} \text{直角三角形中,直角边长a,b,斜边边长c} \\ a^{2}+b^{2}=c^{2} \end{array}

Inequality

FormulasLaTeXFormulasLaTeX
$a > b,b > c \Rightarrow a > c $a > b,b > c \Rightarrow a > c $a > b,c > d \Rightarrow a+c > b+d $a > b,c > d \Rightarrow a+c > b+d
$a > b > 0,c > d > 0 \Rightarrow ac bd $a > b > 0,c > d > 0 \Rightarrow ac bd $\begin{array}{c} a \gt b,c \gt 0 \Rightarrow ac \gt bc \\ a \gt b,c \lt 0 \Rightarrow ac \lt bc \end{array}$\begin{array}{c} a \gt b,c \gt 0 \Rightarrow ac \gt bc \\ a \gt b,c \lt 0 \Rightarrow ac \lt bc \end{array}
$\left | a-b \right | \geqslant \left | a \right | -\left | b \right | $\left | a-b \right | \geqslant \left | a \right | -\left | b \right | $-\left | a \right |\leq a\leqslant \left | a \right |$-\left | a \right |\leq a\leqslant \left | a \right |
$\left | a \right |\leqslant b \Rightarrow -b \leqslant a \leqslant \left | b \right | $\left | a \right |\leqslant b \Rightarrow -b \leqslant a \leqslant \left | b \right | $\left | a+b \right | \leqslant \left | a \right | + \left | b \right | $\left | a+b \right | \leqslant \left | a \right | + \left | b \right |
$\begin{array}{c} a \gt b \gt 0,n \in N^{\ast},n \gt 1 \\ \Rightarrow a^{n}\gt b^{n}, \sqrt[n]{a}\gt \sqrt[n]{b} \end{array}$\begin{array}{c} a \gt b \gt 0,n \in N^{\ast},n \gt 1 \\ \Rightarrow a^{n}\gt b^{n}, \sqrt[n]{a}\gt \sqrt[n]{b} \end{array}$\left( \sum_{k=1}^n a_k b_k \right)^{\!\!2}\leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) $\left( \sum_{k=1}^n a_k b_k \right)^{\!\!2}\leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
$\begin{array}{c} a,b \in R^{+} \\ \Rightarrow \frac{a+b}{{2}}\ge \sqrt{ab} \\ \left( \text{当且仅当}a=b\text{时取“}=\text{”号}\right) \end{array}$\begin{array}{c} a,b \in R^{+} \\ \Rightarrow \frac{a+b}{{2}}\ge \sqrt{ab} \\ \left( \text{当且仅当}a=b\text{时取“}=\text{”号}\right) \end{array}$\begin{array}{c} a,b \in R \\ \Rightarrow a^{2}+b^{2}\gt 2ab \\ \left( \text{当且仅当}a=b\text{时取“}=\text{”号}\right)\end{array}$\begin{array}{c} a,b \in R \\ \Rightarrow a^{2}+b^{2}\gt 2ab \\ \left( \text{当且仅当}a=b\text{时取“}=\text{”号}\right)\end{array}
$\begin{array}{c} H_{n}=\frac{n}{\sum \limits_{i=1}^{n}\frac{1}{x_{i}}}= \frac{n}{\frac{1}{x_{1}}+ \frac{1}{x_{2}}+ \cdots + \frac{1}{x_{n}}} \\ G_{n}=\sqrt[n]{\prod \limits_{i=1}^{n}x_{i}}= \sqrt[n]{x_{1}x_{2}\cdots x_{n}} \\ A_{n}=\frac{1}{n}\sum \limits_{i=1}^{n}x_{i}=\frac{x_{1}+ x_{2}+ \cdots + x_{n}}{n} \\ Q_{n}=\sqrt{\sum \limits_{i=1}^{n}x_{i}^{2}}= \sqrt{\frac{x_{1}^{2}+ x_{2}^{2}+ \cdots + x_{n}^{2}}{n}} \\ H_{n}\leq G_{n}\leq A_{n}\leq Q_{n} \end{array}$\begin{array}{c} H_{n}=\frac{n}{\sum \limits_{i=1}^{n}\frac{1}{x_{i}}}= \frac{n}{\frac{1}{x_{1}}+ \frac{1}{x_{2}}+ \cdots + \frac{1}{x_{n}}} \\ G_{n}=\sqrt[n]{\prod \limits_{i=1}^{n}x_{i}}= \sqrt[n]{x_{1}x_{2}\cdots x_{n}} \\ A_{n}=\frac{1}{n}\sum \limits_{i=1}^{n}x_{i}=\frac{x_{1}+ x_{2}+ \cdots + x_{n}}{n} \\ Q_{n}=\sqrt{\sum \limits_{i=1}^{n}x_{i}^{2}}= \sqrt{\frac{x_{1}^{2}+ x_{2}^{2}+ \cdots + x_{n}^{2}}{n}} \\ H_{n}\leq G_{n}\leq A_{n}\leq Q_{n} \end{array}

Integral

FormulasLaTeXFormulasLaTeX
$\frac{\mathrm{d}}{\mathrm{d}x}x^n=nx^{n-1} $\frac{\mathrm{d}}{\mathrm{d}x}x^n=nx^{n-1} $\frac{\mathrm{d}}{\mathrm{d}x}e^{ax}=a\,e^{ax} $\frac{\mathrm{d}}{\mathrm{d}x}e^{ax}=a\,e^{ax}
$\frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{1}{x} $\frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{1}{x} $\frac{\mathrm{d}}{\mathrm{d}x}\sin x=\cos x $\frac{\mathrm{d}}{\mathrm{d}x}\sin x=\cos x
$\frac{\mathrm{d}}{\mathrm{d}x}\cos x=-\sin x $\frac{\mathrm{d}}{\mathrm{d}x}\cos x=-\sin x $\int k\mathrm{d}x = kx+C $\int k\mathrm{d}x = kx+C
$\frac{\mathrm{d}}{\mathrm{d}x}\tan x=\sec^2 x $\frac{\mathrm{d}}{\mathrm{d}x}\tan x=\sec^2 x $\frac{\mathrm{d}}{\mathrm{d}x}\cot x=-\csc^2 x $\frac{\mathrm{d}}{\mathrm{d}x}\cot x=-\csc^2 x
$\int \frac{1}{x}\mathrm{d}x= \ln \left| x \right| +C $\int \frac{1}{x}\mathrm{d}x= \ln \left| x \right| +C $\int \frac{1}{\sqrt{1-x^{2}}}\mathrm{d}x= \arcsin x +C $\int \frac{1}{\sqrt{1-x^{2}}}\mathrm{d}x= \arcsin x +C
$\int \frac{1}{1+x^{2}}\mathrm{d}x= \arctan x +C $\int \frac{1}{1+x^{2}}\mathrm{d}x= \arctan x +C $\int u \frac{\mathrm{d}v}{\mathrm{d}x}\,\mathrm{d}x=uv-\int \frac{\mathrm{d}u}{\mathrm{d}x}v\,\mathrm{d}x $\int u \frac{\mathrm{d}v}{\mathrm{d}x}\,\mathrm{d}x=uv-\int \frac{\mathrm{d}u}{\mathrm{d}x}v\,\mathrm{d}x
$f(x) = \int_{-\infty}^\infty \hat f(x)\xi\,e^{2 \pi i \xi x} \,\mathrm{d}\xi $f(x) = \int_{-\infty}^\infty \hat f(x)\xi\,e^{2 \pi i \xi x} \,\mathrm{d}\xi $\int x^{\mu}\mathrm{d}x=\frac{x^{\mu +1}}{\mu +1}+C, \left({\mu \neq -1}\right) $\int x^{\mu}\mathrm{d}x=\frac{x^{\mu +1}}{\mu +1}+C, \left({\mu \neq -1}\right)

Matrix

FormulasLaTeXFormulasLaTeX
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}
$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} $\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} $\begin{array}{c} A=A^{T} \\ A=-A^{T} \end{array}$\begin{array}{c} A=A^{T} \\ A=-A^{T} \end{array}
$O = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} $O = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} $A_{m\times n}= \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}& a_{m2}& \cdots & a_{mn} \end{bmatrix} =\left [ a_{ij}\right ] $A_{m\times n}= \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}& a_{m2}& \cdots & a_{mn} \end{bmatrix} =\left [ a_{ij}\right ]
$\begin{array}{c} A={\left[ a_{ij}\right]_{m \times n}},B={\left[ b_{ij}\right]_{n \times s}} \\ c_{ij}= \sum \limits_{k=1}^{{n}}a_{ik}b_{kj} \\ C=AB=\left[ c_{ij}\right]_{m \times s} = \left[ \sum \limits_{k=1}^{n}a_{ik}b_{kj}\right]_{m \times s} \end{array}$\begin{array}{c} A={\left[ a_{ij}\right]_{m \times n}},B={\left[ b_{ij}\right]_{n \times s}} \\ c_{ij}= \sum \limits_{k=1}^{{n}}a_{ik}b_{kj} \\ C=AB=\left[ c_{ij}\right]_{m \times s} = \left[ \sum \limits_{k=1}^{n}a_{ik}b_{kj}\right]_{m \times s} \end{array}$\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i}& \mathbf{j}& \mathbf{k} \\ \frac{\partial X}{\partial u}& \frac{\partial Y}{\partial u}& 0 \\ \frac{\partial X}{\partial v}& \frac{\partial Y}{\partial v}& 0 \\ \end{vmatrix} $\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i}& \mathbf{j}& \mathbf{k} \\ \frac{\partial X}{\partial u}& \frac{\partial Y}{\partial u}& 0 \\ \frac{\partial X}{\partial v}& \frac{\partial Y}{\partial v}& 0 \\ \end{vmatrix}

Trigonometric Functions

FormulasLaTeXFormulasLaTeX
$e^{i \theta} $e^{i \theta} $\left(\frac{\pi}{2}-\theta \right ) $\left(\frac{\pi}{2}-\theta \right )
$\text{sin}^{2}\frac{\alpha}{2}=\frac{1- \text{cos}\alpha}{2} $\text{sin}^{2}\frac{\alpha}{2}=\frac{1- \text{cos}\alpha}{2} $\text{cos}^{2}\frac{\alpha}{2}=\frac{1+ \text{cos}\alpha}{2} $\text{cos}^{2}\frac{\alpha}{2}=\frac{1+ \text{cos}\alpha}{2}
$\text{tan}\frac{\alpha}{2}=\frac{\text{sin}\alpha}{1+ \text{cos}\alpha} $\text{tan}\frac{\alpha}{2}=\frac{\text{sin}\alpha}{1+ \text{cos}\alpha} $\sin \alpha + \sin \beta =2 \sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} $\sin \alpha + \sin \beta =2 \sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}
$\sin \alpha - \sin \beta =2 \cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} $\sin \alpha - \sin \beta =2 \cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} $\cos \alpha + \cos \beta =2 \cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} $\cos \alpha + \cos \beta =2 \cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}
$\cos \alpha - \cos \beta =-2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} $\cos \alpha - \cos \beta =-2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} $a^{2}=b^{2}+c^{2}-2bc\cos A $a^{2}=b^{2}+c^{2}-2bc\cos A
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2R} $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2R} $\sin \left ( \frac{\pi}{2}-\alpha \right ) = \cos \alpha $\sin \left ( \frac{\pi}{2}-\alpha \right ) = \cos \alpha
$\sin \left ( \frac{\pi}{2}+\alpha \right ) = \cos \alpha $\sin \left ( \frac{\pi}{2}+\alpha \right ) = \cos \alpha

Statistics

FormulasLaTeXFormulasLaTeX
$C_{r}^{n} $C_{r}^{n} $\frac{n!}{r!(n-r)!} $\frac{n!}{r!(n-r)!}
$\sum_{i=1}^{n}{X_i} $\sum_{i=1}^{n}{X_i} $\sum_{i=1}^{n}{X_i^2} $\sum_{i=1}^{n}{X_i^2}
$X_1, \cdots,X_n $X_1, \cdots,X_n $\frac{x-\mu}{\sigma} $\frac{x-\mu}{\sigma}
$\sum_{i=1}^{n}{(X_i - \overline{X})^2} $\sum_{i=1}^{n}{(X_i - \overline{X})^2} $\begin{array}{c} \text{若}P \left( AB \right) =P \left( A \right) P \left( B \right) \\ \text{则}P \left( A \left| B\right. \right) =P \left({B}\right) \end{array}$\begin{array}{c} \text{若}P \left( AB \right) =P \left( A \right) P \left( B \right) \\ \text{则}P \left( A \left| B\right. \right) =P \left({B}\right) \end{array}
$P(E) ={n \choose k}p^k (1-p)^{n-k} $P(E) ={n \choose k}p^k (1-p)^{n-k} $P \left( A \right) = \lim \limits_{n \to \infty}f_{n}\left ( A \right ) $P \left( A \right) = \lim \limits_{n \to \infty}f_{n}\left ( A \right )
$P \left( \bigcup \limits_{i=1}^{+ \infty}A_{i}\right) = \prod \limits_{i=1}^{+ \infty}P{\left( A_{i}\right)} $P \left( \bigcup \limits_{i=1}^{+ \infty}A_{i}\right) = \prod \limits_{i=1}^{+ \infty}P{\left( A_{i}\right)} $\begin{array}{c} P \left( \emptyset \right) =0 \\ P \left( S \right) =1 \end{array}$\begin{array}{c} P \left( \emptyset \right) =0 \\ P \left( S \right) =1 \end{array}
$\begin{array}{c} \forall A \in S \\ P \left( A \right) \ge 0 \end{array}$\begin{array}{c} \forall A \in S \\ P \left( A \right) \ge 0 \end{array}$P \left( \bigcup \limits_{i=1}^{n}A_{i}\right) = \prod \limits_{i=1}^{n}P \left( A_{i}\right) $P \left( \bigcup \limits_{i=1}^{n}A_{i}\right) = \prod \limits_{i=1}^{n}P \left( A_{i}\right)
$\begin{array}{c} S= \binom{N}{n},A_{k}=\binom{M}{k}\cdot \binom{N-M}{n-k} \\ P\left ( A_{k}\right ) = \frac{\binom{M}{k}\cdot \binom{N-M}{n-k}}{\binom{N}{n}} \end{array}$\begin{array}{c} S= \binom{N}{n},A_{k}=\binom{M}{k}\cdot \binom{N-M}{n-k} \\ P\left ( A_{k}\right ) = \frac{\binom{M}{k}\cdot \binom{N-M}{n-k}}{\binom{N}{n}} \end{array}$\begin{array}{c} P_{n}=n! \\ A_{n}^{k}=\frac{n!}{\left( n-k \left) !\right. \right.} \end{array}$\begin{array}{c} P_{n}=n! \\ A_{n}^{k}=\frac{n!}{\left( n-k \left) !\right. \right.} \end{array}

Sequence

FormulasLaTeXFormulasLaTeX
$a_{n}=a_{1}q^{n-1} $a_{n}=a_{1}q^{n-1} $a_{n}=a_{1}+ \left( n-1 \left) d\right. \right. $a_{n}=a_{1}+ \left( n-1 \left) d\right. \right.
$S_{n}=na_{1}+\frac{n \left( n-1 \right)}{{2}}d$S_{n}=na_{1}+\frac{n \left( n-1 \right)}{{2}}d$S_{n}=\frac{n \left( a_{1}+a_{n}\right)}{2} $S_{n}=\frac{n \left( a_{1}+a_{n}\right)}{2}
$\frac{1}{n \left( n+k \right)}= \frac{1}{k}\left( \frac{1}{n}-\frac{1}{n+k}\right) $\frac{1}{n \left( n+k \right)}= \frac{1}{k}\left( \frac{1}{n}-\frac{1}{n+k}\right) $\frac{1}{n^{2}-1}= \frac{1}{2}\left( \frac{1}{n-1}-\frac{1}{n+1}\right) $\frac{1}{n^{2}-1}= \frac{1}{2}\left( \frac{1}{n-1}-\frac{1}{n+1}\right)
$\frac{1}{4n^{2}-1}=\frac{1}{2}\left( \frac{1}{2n-1}-\frac{1}{2n+1}\right) $\frac{1}{4n^{2}-1}=\frac{1}{2}\left( \frac{1}{2n-1}-\frac{1}{2n+1}\right) $\frac{n+1}{n \left( n-1 \left) \cdot 2^{n}\right. \right.}= \frac{1}{\left( n-1 \left) \cdot 2^{n-1}\right. \right.}-\frac{1}{n \cdot 2^{n}} $\frac{n+1}{n \left( n-1 \left) \cdot 2^{n}\right. \right.}= \frac{1}{\left( n-1 \left) \cdot 2^{n-1}\right. \right.}-\frac{1}{n \cdot 2^{n}}
$\begin{array}{c} \text{若}\left \{a_{n}\right \}、\left \{b_{n}\right \}\text{为等差数列}, \\ \text{则}\left \{a_{n}+ b_{n}\right \}\text{为等差数列} \end{array}$\begin{array}{c} \text{若}\left \{a_{n}\right \}、\left \{b_{n}\right \}\text{为等差数列}, \\ \text{则}\left \{a_{n}+ b_{n}\right \}\text{为等差数列} \end{array}$(1+x)^{n} =1 + \frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} + \cdots $(1+x)^{n} =1 + \frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} + \cdots

Physical

FormulasLaTeXFormulasLaTeX
\sum {{{ \vec{F} }_i}} = \frac{{d \vec{v}}}{{dt}} = 0 \vec{F} = m \vec{a} = m \frac{{{d^2} \vec{r} }}{{d{t^2}}}
{{ \vec{F} }_{12}} = - {{ \vec{F} }_{21}} ${E_p} = -\frac{{GMm}}{r} ${E_p} = -\frac{{GMm}}{r}
\vec{F} = k \frac{{Qq}}{{{r^2}}} \hat{r} \oint_L { \vec{E} } \cdot { \rm{d}} \vec{l} = 0
d \vec{B} = \frac{{{ \mu _0}}}{{4 \pi }} \frac{{Idl \times \vec{r} }}{{{r^3}}} = \frac{{{ \mu _0}}}{{4 \pi }} \frac{{Idl \sin \theta }}{{{r^2}}} $d \vec{F}= Id \vec{l} \times \vec{B} $d \vec{F}= Id \vec{l} \times \vec{B}
$E = n{{ \Delta \Phi } \over {\Delta {t} }} $E = n{{ \Delta \Phi } \over {\Delta {t} }} \mathop \Phi \nolimits_e = \oint { \vec{E} \cdot {d \vec{S}} = {1 \over {{\varepsilon _0}}}\sum {q} }
\oint { \vec{E} \cdot {d\vec{l}} = - {{d{\varphi _B}} \over {dt}}} \oint { \vec{B} \cdot {d \vec{l}} = { \mu _0}} I + { \mu _0}{I_d}
$Q = I ^ { 2 } R \mathrm { t } $Q = I ^ { 2 } R \mathrm { t } $F = G{{Mm} \over {{r^2}}} $F = G{{Mm} \over {{r^2}}}
${E_k} = hv - {W_0} ${E_k} = hv - {W_0} $\lambda = \frac{{ \frac{{{c^2}}}{v}}}{{ \frac{{m{c^2}}}{h}}} = \frac{h}{{mv}} = \frac{h}{p} $\lambda = \frac{{ \frac{{{c^2}}}{v}}}{{ \frac{{m{c^2}}}{h}}} = \frac{h}{{mv}} = \frac{h}{p}
$\Delta {x} \Delta {p} \ge \frac{h}{{4 \pi }} $\Delta {x} \Delta {p} \ge \frac{h}{{4 \pi }} $l = {l_0} \sqrt {1 - {{( \frac{v}{c})}^2}} $l = {l_0} \sqrt {1 - {{( \frac{v}{c})}^2}}
${y_0} = A \cos ( \omega {t} + { \varphi _0}) ${y_0} = A \cos ( \omega {t} + { \varphi _0}) $y(t) = A \cos ( \frac{{2 \pi {x}}}{ \lambda } + \varphi )$y(t) = A \cos ( \frac{{2 \pi {x}}}{ \lambda } + \varphi )
$\begin{array}{l} \nabla \cdot \mathbf{E} =\cfrac{\rho}{\varepsilon _0} \\ \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{E} = -\cfrac{\partial \mathbf{B}}{\partial t } \\ \nabla \times \mathbf{B} = \mu _0\mathbf{J} + \mu _0\varepsilon_0 \cfrac{\partial \mathbf{E}}{\partial t } \end{array} $\begin{array}{l} \nabla \cdot \mathbf{E} =\cfrac{\rho}{\varepsilon _0} \\ \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{E} = -\cfrac{\partial \mathbf{B}}{\partial t } \\ \nabla \times \mathbf{B} = \mu _0\mathbf{J} + \mu _0\varepsilon_0 \cfrac{\partial \mathbf{E}}{\partial t } \end{array} $\begin{array}{l} {\huge \oiint}_\mathbb{S} \mathbf{E} \cdot\mathrm{d}s= \cfrac{Q}{\varepsilon_0} \\ {\huge \oiint}_\mathbb{S} \mathbf{B} \cdot\mathrm{d}s= 0 \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{E} \cdot \mathrm{d}l=-\cfrac{\mathrm{d}\Phi _{\mathbf{B}}}{\mathrm{d}t } \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{B} \cdot \mathrm{d}l=\mu_0I+ \mu_0 \varepsilon_0\cfrac{\mathrm{d}\Phi _{\mathbf{E}}}{\mathrm{d}t } \end{array} $\begin{array}{l} {\huge \oiint}_\mathbb{S} \mathbf{E} \cdot\mathrm{d}s= \cfrac{Q}{\varepsilon_0} \\ {\huge \oiint}_\mathbb{S} \mathbf{B} \cdot\mathrm{d}s= 0 \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{E} \cdot \mathrm{d}l=-\cfrac{\mathrm{d}\Phi _{\mathbf{B}}}{\mathrm{d}t } \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{B} \cdot \mathrm{d}l=\mu_0I+ \mu_0 \varepsilon_0\cfrac{\mathrm{d}\Phi _{\mathbf{E}}}{\mathrm{d}t } \end{array}
$\begin{array}{l} \nabla \cdot \mathbf{D} =\rho _f \\ \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{E} = -\cfrac{\partial \mathbf{B}}{\partial t } \\ \nabla \times \mathbf{H} = \mathbf{J}_f + \cfrac{\partial \mathbf{D}}{\partial t } \end{array} $\begin{array}{l} \nabla \cdot \mathbf{D} =\rho _f \\ \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{E} = -\cfrac{\partial \mathbf{B}}{\partial t } \\ \nabla \times \mathbf{H} = \mathbf{J}_f + \cfrac{\partial \mathbf{D}}{\partial t } \end{array} $\begin{array}{l} {\huge \oiint}_\mathbb{S} \mathbf{D} \cdot\mathrm{d}s= Q_f \\ {\huge \oiint}_\mathbb{S} \mathbf{B} \cdot\mathrm{d}s= 0 \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{E} \cdot \mathrm{d}l=-\cfrac{\mathrm{d}\Phi _{\mathbf{B}}}{\mathrm{d}t } \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{H} \cdot \mathrm{d}l=I_f+\cfrac{\mathrm{d}\Phi _{\mathbf{D}}}{\mathrm{d}t } \end{array} $\begin{array}{l} {\huge \oiint}_\mathbb{S} \mathbf{D} \cdot\mathrm{d}s= Q_f \\ {\huge \oiint}_\mathbb{S} \mathbf{B} \cdot\mathrm{d}s= 0 \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{E} \cdot \mathrm{d}l=-\cfrac{\mathrm{d}\Phi _{\mathbf{B}}}{\mathrm{d}t } \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{H} \cdot \mathrm{d}l=I_f+\cfrac{\mathrm{d}\Phi _{\mathbf{D}}}{\mathrm{d}t } \end{array}

Chemical

FormulasLaTeXFormulasLaTeX
\ce{SO4^2- + Ba^2+ -> BaSO4 v} \ce{A v B (v) -> B ^ B (^)}
\ce{Hg^2+ ->[I-] $\underset{\mathrm{red}}{\ce{HgI2}}$ ->[I-] $\underset{\mathrm{red}}{\ce{[Hg^{II}I4]^2-}}$} \ce{Zn^2+ <=>[+ 2OH-][+ 2H+] $\underset{\text{amphoteres Hydroxid}}{\ce{Zn(OH)2 v}}$ <=>[+ 2OH-][+ 2H+] $\underset{\text{Hydroxozikat}}{\ce{[Zn(OH)4]^2-}}$}
\ce{H2O}\quad \ce{Sb2O3} \quad\ce{H+} \\\ce{CrO4^2-} \quad\ce{[AgCl2]-} \\\quad\ce{Y^99+} \quad\ce{Y^{99+}}\ce{2H2O} \quad\ce{0.5 H2O} \\\ce{1/2H2O} \quad\ce{(1/2)H2O} \quad\ce{$n$ H2O}
\ce{^{227}_{90}Th+} \quad\ce{^227_90Th+} \quad\ce{^{0}_{-1}n^{-}} \quad\ce{^0_-1n-}\ce{H^3 HO}
\ce{A <--> B} \ce{A <=> B} \ce{A <=>> B} \ce{A <<=> B}\ce{A ->[H2O] B} \ce{A ->[{上方文字}][{下方文字}] B}
\ce{$K = \frac{[\ce{Hg^2+}][\ce{Hg}]}{[\ce{Hg2^2+}]}$}\quad\ce{$K = \ce{\frac{[Hg^2+][Hg]}{[Hg2^2+]}}$}

Others

FormulasLaTeXFormulasLaTeX
$x\tfrac{a}{b} $x\tfrac{a}{b} $\mathrm{d}t $\mathrm{d}t
$\frac{\mathrm{d} y}{\mathrm{d} x} $\frac{\mathrm{d} y}{\mathrm{d} x} $\partial t $\partial t
$\frac{\partial y}{\partial x} $\frac{\partial y}{\partial x} $\nabla\psi $\nabla\psi
$ \frac{\partial^2}{\partial x_1\partial x_2}y $ \frac{\partial^2}{\partial x_1\partial x_2}y $\cfrac{1}{a + \cfrac{7}{b + \cfrac{2}{9}}} =c $\cfrac{1}{a + \cfrac{7}{b + \cfrac{2}{9}}} =c
\begin{equation}x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{a_4} } } }\end{equation}${f}^{(n)} ${f}^{(n)}
${f}'' ${f}'' $\sqrt[2]{3} $\sqrt[2]{3}
$_{a}^{d}x$_{a}^{d}x$x_{a}^{d} $x_{a}^{d}
$_{a}^{d}x_{a}^{d} $_{a}^{d}x_{a}^{d} $36.5^{\circ} $36.5^{\circ}
$\lim_{x \to \infty} $\lim_{x \to \infty} $\lim_{x \to 0} $\lim_{x \to 0}
$\textstyle \lim_{x \to 0} $\textstyle \lim_{x \to 0} $\max_{x} f$\max_{x} f
$\log_{2}{5} $\log_{2}{5} $\lg_{2}{4} $\lg_{2}{4}
$\ln_{2}{10} $\ln_{2}{10} $\sin^{-1} \alpha $\sin^{-1} \alpha
$\sum_{a}^{b} $\sum_{a}^{b} $ {\textstyle \sum_{a}^{b}} $ {\textstyle \sum_{a}^{b}}
$\prod_{a}^{b} $\prod_{a}^{b} $ {\textstyle \prod_{a}^{b}} $ {\textstyle \prod_{a}^{b}}

Create LaTeX Formula online and save the results as PNG images using our intuitive tool. This user-friendly interface allows you to enter LaTeX equations, which are rendered in high-quality graphics, making it easy to include your mathematical expressions in presentations, documents, and online content. Perfect for students, teachers, and professionals in mathematics and science, the LaTeX Equation to PNG tool simplifies the equation rendering process.

  • Easy LaTeX Input: Users can easily enter their equations in a designated text area, allowing for one formula per line, which is formatted using standard LaTeX syntax.
  • Multiple Output Formats: Choose to render equations as high-quality PNG files or vector-based SVG images, giving users flexibility based on their needs.
  • Instant Preview: The tool provides an immediate preview of the rendered equation, making it easy for users to see and adjust their input.
  • Flexible Rendering Options: Users can control the display mode, alignment, and minimum width of their equations to fit their desired format.

Write Reply

Leave a Reply

Your email address will not be published. Required fields are marked *

^